An automated arabic text categorization based on the frequency ratio accumulation
نویسندگان
چکیده
Compared to other languages, there is still a limited body of research which has been conducted for the automated Arabic Text Categorization (TC) due to the complex and rich nature of the Arabic language. Most of such research includes supervised Machine Learning (ML) approaches such as Naïve Bayes (NB), K-Nearest Neighbour (KNN), Support Vector Machine and Decision Tree. Most of these techniques have complex mathematical models and do not usually lead to accurate results for Arabic TC. Moreover, all the previous research tended to deal with the Feature Selection (FS) and the classification respectively as independent problems in automatic TC, which led to the cost and complex computational issues. Based on this, the need to apply new techniques suitable for Arabic language and its complex morphology arises. A new approach in the Arabic TC term called the Frequency Ratio Accumulation Method (FRAM), which has a simple mathematical model is applied in this study. The categorization task is combined with a feature processing task. The current research mainly aims at solving the problem of automatic Arabic TC by investigating the FRAM in order to enhance the performance of Arabic TC model. The performance of FRAM classifier is compared with three classifiers based on Bayesian theorem which are called Simple NB, Multi-variant Bernoulli Naïve Bayes (MNB) and Multinomial Naïve Bayes models (MBNB). Based on the findings of the study, the FRAM has outperformed the state of the arts. It’s achieved 95.1% macro-F1 value by using unigram word-level representation method.
منابع مشابه
Arabic News Articles Classification Using Vectorized-Cosine Based on Seed Documents
Besides for its own merits, text classification (TC) has become a cornerstone in many applications. Work presented here is part of and a pre-requisite for a project we have overtaken to create a corpus for the Arabic text process. It is an attempt to create modules automatically that would help speed up the process of classification for any text categorization task. It also serves as a tool for...
متن کاملDocument Analysis And Classification Based On Passing Window
In this paper we present Document analysis and classification system to segment and classify contents of Arabic document images. This system includes preprocessing, document segmentation, feature extraction and document classification. A document image is enhanced in the preprocessing by removing noise, binarization, and detecting and correcting image skew. In document segmentation, an algorith...
متن کاملArabic Text Classification Algorithm using TFIDF and Chi Square Measurements
Text categorization is the process of classifying documents into a predefined set of categories based on its contents of keywords. Text classification is an extended type of text categorization where the text is further categorized into sub-categories. Many algorithms have been proposed and implemented to solve the problem of English text categorization and classification. However, few studies ...
متن کاملOff-line Arabic Handwritten Recognition Using a Novel Hybrid HMM-DNN Model
In order to facilitate the entry of data into the computer and its digitalization, automatic recognition of printed texts and manuscripts is one of the considerable aid to many applications. Research on automatic document recognition started decades ago with the recognition of isolated digits and letters, and today, due to advancements in machine learning methods, efforts are being made to iden...
متن کاملTowards Supporting Exploratory Search over the Arabic Web Content: The Case of ArabXplore
Due to the huge amount of data published on the Web, the Web search process has become more difficult, and it is sometimes hard to get the expected results, especially when the users are less certain about their information needs. Several efforts have been proposed to support exploratory search on the web by using query expansion, faceted search, or supplementary information extracted from exte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. Arab J. Inf. Technol.
دوره 11 شماره
صفحات -
تاریخ انتشار 2014